cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A286560 Compound filter (summands of A004001 & summands of A005185): a(n) = P(A286541(n), A286559(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 2, 5, 41, 71, 71, 198, 313, 484, 922, 1153, 1201, 2105, 1565, 2588, 4046, 5001, 7443, 7443, 8851, 10671, 19589, 16570, 16935, 22254, 25313, 25313, 25313, 42891, 28793, 32768, 52795, 65504, 59178, 73355, 89033, 88632, 107660, 129045, 129045, 153471, 167646, 167646, 182446, 182446, 336130, 197244, 233297, 330472, 307358, 270167, 355325, 378466, 332156
Offset: 1

Views

Author

Antti Karttunen, May 18 2017

Keywords

Crossrefs

Programs

Formula

a(1) = a(2) = 0, for n > 2, a(n) = (1/2)*(2 + ((A286541(n)+A286559(n))^2) - A286541(n) - 3*A286559(n)).

A286559 Compound filter (the left & right summand of Hofstadter Q-sequence): a(n) = P(Q(n-Q(n-1)), Q(n-Q(n-2))), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 2, 2, 5, 8, 8, 13, 13, 13, 25, 24, 25, 41, 32, 41, 50, 50, 61, 61, 61, 61, 113, 84, 86, 113, 113, 113, 113, 181, 128, 129, 181, 200, 163, 182, 221, 200, 221, 242, 242, 265, 265, 265, 265, 265, 481, 263, 290, 420, 363, 314, 422, 420, 365, 481, 420, 481, 481, 481, 481, 761, 512, 452, 687, 577, 513, 722, 761, 650, 687, 762, 723, 760, 722, 842, 760, 801
Offset: 1

Views

Author

Antti Karttunen, May 18 2017

Keywords

Crossrefs

Programs

Formula

a(1) = a(2) = 0, for n > 2, a(n) = (1/2)*(2 + ((A005185(n-A005185(n-1))+A005185(n-A005185(n-2)))^2) - A005185(n-A005185(n-1)) - 3*A005185(n-A005185(n-2))).

A302780 Restricted growth sequence transform of 4-tuple [H(H(n-1)), H(n-H(n-1)), Q(n-Q(n-1)), Q(n-Q(n-2))] where H = A004001 and Q = A005185.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 47, 50, 50, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 80
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2018

Keywords

Comments

Restricted growth sequence transform of A286560: a filter sequence which includes both the summands of A004001 and the summands of A005185.
For all i, j: a(i) = a(j) => b(i) = b(j), where b is a sequence like A087740, A284019, A286569 or A302779.
For n > 1000 the duplicates get rare. In range [1000, 65536] there are only three cases: a(1353) = a(1354) = 1319, a(39361) = a(39362) = 39326, and a(46695) = a(46696) = 46659.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    first_n_of_A004001(n) = { my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); (v); }; \\ Charles R Greathouse IV, Feb 26 2017
    v004001 = first_n_of_A004001(up_to);
    A004001(n) = v004001[n];
    first_n_of_A005185(n) = { my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[k-v[k-1]]+v[k-v[k-2]]); (v); }; \\
    v005185 = first_n_of_A005185(up_to);
    A005185(n) = v005185[n];
    Aux302780(n) = if(n<3,0,[A004001(A004001(n-1)), A004001(n-A004001(n-1)), A005185(n-A005185(n-1)), A005185(n-A005185(n-2))]);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux302780(n))),"b302780.txt");
Showing 1-3 of 3 results.