A286564 Triangular table A286563 reversed.
1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 3, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 1
Examples
The first fifteen rows of this triangular table: 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 3, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..7875; the first 125 rows of the triangle
Programs
-
Mathematica
Table[If[k == 1, 1, IntegerExponent[n, k]], {n, 15}, {k, n, 1, -1}] // Flatten (* Michael De Vlieger, May 20 2017 *)
-
Python
def T(n, k): i=1 if k==1: return 1 while n%(k**i)==0: i+=1 return i-1 for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)] [::-1]) # Indranil Ghosh, May 20 2017
-
Scheme
(define (A286564 n) (A286561bi (A002024 n) (A004736 n))) ;; For A286561bi see A286561.
Comments