cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286574 Sum of the binary weights of the lengths of 1-runs in base-2 representation of n: a(n) = A000523(A286575(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 3, 4, 2, 3, 3, 3, 3, 4, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, May 28 2017

Keywords

Comments

a(0) = 0 (an empty sum).

Examples

			For n = 27, "11011" in binary, there are two 1-runs, both of length 2, thus a(27) = A000120(2) + A000120(2) = 1 + 1 = 2.
For n = 29, "11101" in binary, there are two 1-runs, of lengths 1 and 3, thus a(29) = A000120(1) + A000120(3) = 1 + 2 = 3.
For n = 61, "111101" in binary, there are two 1-runs, of lengths 1 and 4, thus a(61) = A000120(1) + A000120(4) = 1 + 1 = 2.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, prime, log
    import math
    def wt(n): return bin(n).count("1")
    def a037445(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f])
    def A(n): return n - 2**int(math.floor(log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a286575(n): return a037445(b(n))
    def a(n): return int(math.floor(log(a286575(n), 2))) # Indranil Ghosh, May 30 2017
    
  • Python
    # uses RLT function from A278159
    def A286574(n): return len(bin(RLT(n,lambda m: 2**(bin(m).count('1')))))-3 # Chai Wah Wu, Feb 04 2022
  • Scheme
    (define (A286574 n) (A000523 (A286575 n)))
    

Formula

a(n) = A000523(A286575(n)). [Log_2 of run-length transform of A001316.]
a(n) = A064547(A005940(1+n)).