cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A286593 Compound filter (the length of rightmost run of 1's in base-2 & deficiency/abundance): a(n) = P(A089309(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 5, 1, 4, 12, 24, 1, 16, 2, 30, 38, 37, 13, 32, 1, 46, 56, 80, 79, 22, 107, 139, 138, 137, 22, 173, 18, 172, 175, 281, 1, 67, 154, 122, 211, 232, 57, 139, 254, 277, 121, 327, 8, 37, 381, 439, 408, 407, 436, 212, 11, 466, 138, 564, 598, 562, 596, 668, 784, 704, 258, 196, 1, 352, 121, 782, 22, 301, 38, 864, 821, 862, 562, 632, 47, 631, 156, 1039, 947, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A089309(n)+A286449(n))^2) - A089309(n) - 3*A286449(n)).

A286595 Compound filter (2-adic valuation & deficiency/abundance): a(n) = P(A001511(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 11, 10, 16, 5, 22, 48, 37, 8, 11, 15, 46, 68, 67, 108, 22, 107, 106, 175, 137, 30, 154, 18, 172, 138, 191, 21, 67, 173, 106, 256, 232, 57, 106, 329, 277, 138, 301, 13, 37, 353, 352, 501, 407, 467, 191, 24, 466, 138, 497, 634, 562, 632, 631, 744, 704, 192, 106, 28, 352, 138, 742, 39, 301, 38, 781, 950, 862, 597, 596, 58, 631, 138, 904, 1133, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286449(n))^2) - A001511(n) - 3*A286449(n)).

A291765 Compound filter (sum of proper divisors & prime signature): a(n) = P(A001065(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 2, 18, 2, 61, 2, 98, 25, 86, 2, 367, 2, 115, 100, 450, 2, 517, 2, 550, 131, 185, 2, 1747, 42, 226, 203, 769, 2, 2527, 2, 1922, 205, 320, 166, 4060, 2, 373, 248, 2678, 2, 3457, 2, 1315, 979, 491, 2, 7579, 63, 1474, 346, 1642, 2, 3982, 248, 3805, 401, 698, 2, 13969, 2, 775, 1367, 7938, 295, 5749, 2, 2404, 523, 5327, 2, 18844, 2, 1030, 1819, 2839, 295
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001065(n)+A046523(n))^2) - A001065(n) - 3*A046523(n)).
Showing 1-3 of 3 results.