A286604 a(n) = n mod sum of digits of n in factorial base.
0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 3, 0, 1, 2, 3, 0, 2, 0, 3, 0, 1, 2, 5, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 4, 0, 5, 2, 3, 4, 3, 4, 5, 0, 1, 2, 3, 0, 3, 0, 3, 0, 2, 3, 5, 0, 1, 2, 3, 4, 2, 1, 1, 2, 6, 0, 7, 0, 1, 2, 0, 1, 5, 2, 4, 0, 3, 4, 6, 4, 1, 2, 3, 4, 1, 0, 0, 1, 5, 6, 5, 0, 2, 3, 3, 4, 3, 2, 1, 2, 0, 1, 3, 0, 4, 5, 7, 0, 5, 2, 3, 4, 0, 1, 9, 0
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, s += r; m++]; Mod[n, s]]; Array[a, 100] (* Amiram Eldar, Feb 21 2024 *)
-
Python
def a007623(n, p=2): return n if n
-
Scheme
(define (A286604 n) (modulo n (A034968 n)))
Formula
a(n) = n mod A034968(n).