A286606 a(n) = n mod product of nonzero digits of n in factorial base.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 4, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 4, 5, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 10, 11, 0, 1, 2, 0, 4, 5, 0, 1, 2, 0, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 6, 7, 8, 9, 22, 23, 0
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Module[{k = n, m = 2, r, p = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, If[r > 0, p *= r]; m++]; Mod[n, p]]; Array[a, 100] (* Amiram Eldar, Feb 21 2024 *)
-
Python
from operator import mul from functools import reduce def a007623(n, p=2): return n if n
-
Scheme
(define (A286606 n) (modulo n (A227153 n)))
Formula
a(n) = n mod A227153(n).