cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286616 Transpose of square array A286615.

Original entry on oeis.org

0, 2, 1, 3, 7, 5, 4, 11, 35, 29, 6, 13, 59, 239, 209, 8, 31, 65, 419, 2519, 2309, 9, 37, 215, 449, 4619, 32339, 30029, 10, 41, 245, 2339, 4829, 60059, 540539, 510509, 12, 43, 269, 2549, 30239, 62369, 1021019, 10210199, 9699689, 14, 61, 275, 2729, 32549, 512819, 1051049, 19399379, 232792559, 223092869
Offset: 1

Views

Author

Antti Karttunen, Jun 30 2017

Keywords

Comments

A permutation of nonnegative integers.

Examples

			The top left 7 X 7 corner of the array:
      0,      2,       3,       4,       6,        8,        9
      1,      7,      11,      13,      31,       37,       41
      5,     35,      59,      65,     215,      245,      269
     29,    239,     419,     449,    2339,     2549,     2729
    209,   2519,    4619,    4829,   30239,    32549,    34649
   2309,  32339,   60059,   62369,  512819,   542849,   570569
  30029, 540539, 1021019, 1051049, 9729719, 10240229, 10720709
		

Crossrefs

Transpose: A286615.
One less than A276943.
Column 1: A057588.

Programs

Formula

A(n,k) = A286615(k,n) = A276943(n,k)-1.

A276945 Square array A(row,col): A(row,1) = A276155(row), and for col > 1, A(row,col) = A276154(A(row,col-1)); Dispersion of primorial base left shift A276154.

Original entry on oeis.org

1, 2, 3, 6, 8, 4, 30, 36, 12, 5, 210, 240, 60, 14, 7, 2310, 2520, 420, 66, 32, 9, 30030, 32340, 4620, 450, 216, 38, 10, 510510, 540540, 60060, 4830, 2340, 246, 42, 11, 9699690, 10210200, 1021020, 62370, 30240, 2550, 270, 44, 13, 223092870, 232792560, 19399380, 1051050, 512820, 32550, 2730, 276, 62, 15
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Entries in column k are all multiples of A002110(k-1). Dividing that factor out gives array A286625. - Antti Karttunen, Jun 30 2017

Examples

			The top left corner of the array:
   1,  2,   6,   30,   210,    2310,    30030,    510510
   3,  8,  36,  240,  2520,   32340,   540540,  10210200
   4, 12,  60,  420,  4620,   60060,  1021020,  19399380
   5, 14,  66,  450,  4830,   62370,  1051050,  19909890
   7, 32, 216, 2340, 30240,  512820,  9729720, 223603380
   9, 38, 246, 2550, 32550,  542850, 10240230, 233303070
  10, 42, 270, 2730, 34650,  570570, 10720710, 242492250
  11, 44, 276, 2760, 34860,  572880, 10750740, 243002760
  13, 62, 426, 4650, 60270, 1023330, 19429410, 446696250
  15, 68, 456, 4860, 62580, 1053360, 19939920, 456395940
  16, 72, 480, 5040, 64680, 1081080, 20420400, 465585120
  17, 74, 486, 5070, 64890, 1083390, 20450430, 466095630
  18, 90, 630, 6930, 90090, 1531530, 29099070, 669278610
		

Crossrefs

Inverse permutation: A276946.
Transpose: A276943. One more than A286615.
Column 1: A276155.
Row 1: A002110.
Row 2: A276939.
Row 3: A088860 (2*A002110).
Row 11: 2*A276939 (row 2) from 16, 72, 480, 5040, 64680, ... onward.
Row 13: 3*A002110, from 18, 90, 630, 6930, 90090, ... onward.
Cf. A276154.
Cf. also arrays A286625, A276955.

Programs

Formula

A(row,1) = A276155(row); for row > 1, A(row,col) = A276154(A(row,col-1)).
Showing 1-2 of 2 results.