cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286662 Numbers k such that k, k^2 and k^3 are cyclops numbers (A134808).

Original entry on oeis.org

0, 16075, 18039, 1130239, 1130363, 1130668, 1150474, 1220156, 1230423, 1250928, 1290628, 1330162, 1350478, 1390313, 1390989, 1510414, 1510712, 1530314, 1530461, 1530585, 1540896, 1540977, 1560186, 1560324, 1570341, 1580342, 1620244, 1620389, 1630871, 1650288
Offset: 1

Views

Author

Colin Barker, May 12 2017

Keywords

Comments

For k = 1130239, k^4 = 1631853457220539336688641 is also a cyclops number.

Examples

			16075 is in the sequence because k^2 = 258405625, k^3 = 4153870421875 and these three numbers are cyclops numbers.
		

Crossrefs

Programs

  • Mathematica
    cycQ[n_]:=DigitCount[n,10,0]==1&&OddQ[IntegerLength[n]]&& IntegerDigits[ n][[(IntegerLength[n]+1)/2]]==0; Join[{0},Table[Select[Range[ 10^n, 10^(n+1)-1],AllTrue[{#,#^2,#^3},cycQ]&],{n,2,6,2}]]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 25 2017 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    L=List(); for(n=0, 10000000, if(is_cyclops(n) && is_cyclops(n^2) && is_cyclops(n^3), listput(L, n))); Vec(L)