cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286679 a(n) = (2*prime(n)^2 + 1)/3.

Original entry on oeis.org

17, 33, 81, 113, 193, 241, 353, 561, 641, 913, 1121, 1233, 1473, 1873, 2321, 2481, 2993, 3361, 3553, 4161, 4593, 5281, 6273, 6801, 7073, 7633, 7921, 8513, 10753, 11441, 12513, 12881, 14801, 15201, 16433, 17713, 18593, 19953, 21361, 21841
Offset: 3

Views

Author

Dimitris Valianatos, May 12 2017

Keywords

Comments

For primes p other than 3, p == 1 or 2 (mod 3) and p^2 == 1 (mod 3). Thus 2*p^2 + 1 is a multiple of 3.

Crossrefs

Programs

  • Magma
    [(2*NthPrime(n)^2+1)/3: n in [3..50]]; // Vincenzo Librandi, May 15 2017
  • Mathematica
    (2Prime[Range[3, 50]]^2 + 1)/3 (* Alonso del Arte, May 12 2017 *)
  • PARI
    {
    forprime(n=5,300,
             print1((2*n^2+1)/3", ")
            )
    }
    

Formula

Product_{n >= 3} (3*a(n) + 1) / (3*a(n) - 1) = (26/25) * (50/49) * (122/121) * ... = 54/(5*Pi^2) = 1.0942687833372479315938982026650585002 (constant).
a(3) = 17; a(n + 1) = a(n) + 16 * A075888(n-2) for n > 3.
Numbers of the form 16k + 1 for some k. In particular, k belongs to A001318, excluding those for which sqrt(24 * A001318(k) + 1) are composites.