A286683 Even numbers k such that the number of odd divisors of k is equal to the 2-adic valuation of k.
2, 12, 20, 28, 44, 52, 68, 72, 76, 92, 116, 124, 148, 164, 172, 188, 200, 212, 236, 240, 244, 268, 284, 292, 316, 332, 336, 356, 388, 392, 404, 412, 428, 432, 436, 452, 508, 524, 528, 548, 556, 560, 596, 604, 624, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 816
Offset: 1
Examples
2 is in this sequence because A001227(2) = A007814(2) = 1. 240 is in the sequence because 240 has 4 odd divisors; they are 1, 3, 5 and 15. Furthermore, 240 = 2^4 * 3 * 5. - _David A. Corneth_, Jun 22 2017
Programs
-
Mathematica
Select[Range@ 820, DivisorSum[#, 1 &, OddQ] == IntegerExponent[#, 2] &] (* Michael De Vlieger, Jun 22 2017 *)
-
PARI
is(n) = my(v); n%2==0 && v=valuation(n, 2); numdiv(n>>v)==v \\ David A. Corneth, Jun 22 2017
Extensions
More terms from Michael De Vlieger, Jun 22 2017
240 and 336 inserted by David A. Corneth, Jun 22 2017
Comments