cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286708 Powerful numbers (A001694) that are not prime powers (A000961).

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 900, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500, 2592, 2601, 2700, 2704, 2744
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2017

Keywords

Comments

If a prime p divides a(n) then p^2 must also divide a(n) and number of distinct primes dividing a(n) > 1.
Intersection of A001694 and A024619.

Examples

			-------------------------------
| n | a(n) | prime            |
|   |      | factorization    |
|------------------------------
| 1 | 36   | {{2, 2}, {3, 2}} |
| 2 | 72   | {{2, 3}, {3, 2}} |
| 3 | 100  | {{2, 2}, {5, 2}} |
| 4 | 108  | {{2, 2}, {3, 3}} |
| 5 | 144  | {{2, 4}, {3, 2}} |
| 6 | 196  | {{2, 2}, {7, 2}} |
| 7 | 200  | {{2, 3}, {5, 2}} |
| 8 | 216  | {{2, 3}, {3, 3}} |
| 9 | 225  | {{3, 2}, {5, 2}} |
-------------------------------
a(n) = p_1^e_1*p_2^e_2*... : {{p_1, e_1}, {p_2, e_2}, ...}.
		

Crossrefs

Programs

  • Maple
    N:= 10000:
    S:= {1}: P:= {1}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      S:= map(s -> (s, seq(s*p^k, k = 2 .. floor(log[p](N/s)))), S);
      P:= P union {seq(p^k, k=2..floor(log[p](N)))}:
    od:
    sort(convert(S minus P, list)); # Robert Israel, May 14 2017
  • Mathematica
    Select[Range@2750, Min@FactorInteger[#][[All, 2]] > 1 && ! PrimePowerQ[#] &]
    (* Second program *)
    nn = 2^25; Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], ! PrimePowerQ[#] &] (* Michael De Vlieger, Jun 22 2022 *)
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(4,2745) if len(primefactors(n)) > 1 and min(list(factorint(n).values())) > 1]) # Karl-Heinz Hofmann, Feb 07 2023
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, primepi, mobius
    def A286708(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{p prime} 1/(p*(p-1)) - 1 = A082695 - A136141 - 1 = 0.17043976777096407719... - Amiram Eldar, Feb 12 2021