A286745 Number of distinct partitions of n with parts differing by at least two with smallest part at least two and with an odd number of parts.
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 20, 22, 25, 28, 31, 34, 39, 42, 47, 52, 58, 64, 72, 79, 89, 99, 111, 123, 139, 154, 173, 193, 216, 240, 269, 298, 333, 369, 410, 453, 503, 554, 613, 674, 743, 815, 897, 981, 1077, 1177, 1288, 1405, 1536, 1672, 1825, 1985, 2163, 2350, 2558, 2776, 3019, 3275, 3557, 3856, 4186, 4534, 4919
Offset: 0
Keywords
Examples
a(12) = 2 because of the partitions of 12, 12 and 6+4+2 are the only two that satisfy all three conditions.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+2, 1-t))) end: a:= n-> b(n, 2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Nov 23 2017
-
Mathematica
Table[Length@ Select[ip@n, Min[-Differences@#] >= 2 && Min@# >= 2 && OddQ@Length@# &], {n, 20}]
Formula
a(n) ~ exp(2*Pi*sqrt(n/15)) / (4 * 3^(1/4) * sqrt(5*phi) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 10 2020