A286758 Numbers k such that sigma(k) divides sigma(k!).
1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Keywords
Examples
8 is a term because sigma(8!) / sigma(8) = sigma(40320) / sigma(8) = 159120 / 15 = 10608 (integer).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (first 1000 terms from Jaroslav Krizek)
Programs
-
Magma
[n: n in [1..100] | (SumOfDivisors(Factorial(n))) mod SumOfDivisors(n) eq 0];
-
Mathematica
A286758Q[k_] := PrimeQ[k] || Divisible[DivisorSigma[1, k!], DivisorSigma[1, k]]; Select[Range[100], A286758Q] (* Paolo Xausa, Jul 31 2025 *)
Comments