cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286762 Indices k such that A195441(k) = A195441(k+1).

Original entry on oeis.org

0, 21, 22, 45, 46, 57, 70, 94, 105, 118, 142, 147, 165, 171, 177, 187, 190, 214, 221, 222, 225, 237, 238, 261, 267, 281, 286, 291, 313, 315, 318, 334, 345, 350, 357, 358, 381, 382, 387, 403, 430, 437, 441, 448, 465, 477, 478, 501, 507, 538, 555, 558, 561, 565
Offset: 1

Views

Author

Peter Luschny, May 14 2017

Keywords

Comments

k is in this sequence if and only if the primes p less than or equal to (k+2)/(2+(k mod 2)) such that the sum of digits of k+1 in base p is at least p are also the primes less than or equal to (k+3)/(2+((k+1) mod 2)) such that the sum of digits of k+2 in base p is at least p.
For the comment above and the fact that the sequence is infinite, see Thm. 2 in "Power-Sum Denominators" and Cor. 3 in "The denominators of power sums of arithmetic progressions". - Bernd C. Kellner and Jonathan Sondow, May 24 2017

Examples

			21 and 22 are in this sequence because {2, 3, 5} is the set of primes which meet the given constraints. Let sd(n, p) denote the sum of digits of n in base p, then we have:
2 <= sd(22, 2) = 3; 3 <= sd(22, 3) = 4; 5 <= sd(22, 5) = 6;
2 <= sd(23, 2) = 4; 3 <= sd(23, 3) = 5; 5 <= sd(23, 5) = 7;
2 <= sd(24, 2) = 2; 3 <= sd(24, 3) = 4; 5 <= sd(24, 5) = 8.
All other candidates do not satisfy the requirements: sd(22,7) = 4; sd(22,11) = 2; sd(23,7) = 5; sd(24,7) = 6; sd(24,11) = 4; sd(24,13) = 12.
		

Crossrefs

Programs

  • Julia
    function A286762_list(bound::Int)
        L = fmpz[]; a = fmpz(0)
        for n in 0:bound
            u = A195441(n)
            a == u && push!(L, n-1)
            a = u
        end
    L end
    println(A286762_list(566))
  • Mathematica
    -1 + SequencePosition[Table[Denominator[Together[(BernoulliB[n + 1, x] - BernoulliB[n + 1])]], {n, 0, 600}], w_ /; And[SameQ @@ w, Length@ w == 2]][[All, 1]] (* Michael De Vlieger, Sep 22 2017, after Jonathan Sondow at A195441 *)