cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A287039 Row sums of A286782.

Original entry on oeis.org

1, 1, 9, 100, 1323, 20088, 342430, 6461208, 133618275, 3006094768, 73139285178, 1914937983000, 53720914023150, 1608612191370000, 51235727245542684, 1730349877484075120, 61783682196714238755, 2326122843950925857376, 92117389831885545623650, 3828375469597215729851928
Offset: 0

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    max = 21; (* B(x) is A000699(x) *) B[_] = 0;
    Do[B[x_] = x + x^2 D[B[x]^2/x, x] + O[x]^max // Normal, max];
    Join[{1}, Drop[CoefficientList[(1-x/B[x])/x + O[x]^max, x], -2] Table[2n-1, {n, max-2}]] (* Jean-François Alcover, Oct 25 2018, from PARI *)
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    A286794_seq(N) = Vec((1-1/Ser(A000699_seq(N+1)))/x);
    A287039_seq(N) = {
      my(s = A286794_seq(N));
      concat(1, vector(#s, n, (2*n-1)*s[n]));
    };
    A287039_seq(19)

Formula

a(n) ~ 4*exp(-1)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 19/(8*n) - 23/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 21 2017

A287031 Column 1 of A286782.

Original entry on oeis.org

3, 45, 637, 9567, 156123, 2781389, 54043365, 1141864959, 26137086451, 645573913005, 17138071687053, 487130581207775, 14771502665168715, 476244289169954253, 16274079501768450421, 587711952558035789055, 22370368544174736836835, 895269564785985107345453, 37585737112233443277746589
Offset: 2

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Programs

  • PARI
    A286781_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1; );
      y0;
    };
    A286782_ser(N, t='t) = my(s=A286781_ser(N, t)); 1 + x*s + 2*x^2 * deriv(s,'x);
    Kol(K, N=20) = {
      my(v = A286782_ser(N+K+1, 't+O('t^(K+1))));
      vector(N, n, polcoeff(polcoeff(v, K+n), K));
    };
    Kol(1)

Formula

a(n) = (2*n-1)*A286786(n-1).

A287032 Column 2 of A286782.

Original entry on oeis.org

5, 161, 3744, 80784, 1749969, 39305685, 928825464, 23244466392, 617591825445, 17426790660465, 521767015888200, 16550044554184920, 555080426233315521, 19645031754312701685, 732117928079412794832, 28671309640088889743760, 1177581551918650706931813, 50628032440197924505694433
Offset: 3

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286787(n-1).

A287033 Column 3 of A286782.

Original entry on oeis.org

7, 414, 14850, 446706, 12641265, 354665628, 10134495804, 299276271252, 9206327818259, 296247209694650, 9990889751320686, 353320474467334502, 13098406010068671725, 508634687713890475320, 20666091174548150099160, 877474636354254652191336, 38883242288915246015258751
Offset: 4

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Formula

a(n) = (2*n-1)*A286788(n-1).

A287034 Column 4 of A286782.

Original entry on oeis.org

9, 880, 46150, 1877925, 68167144, 2361060574, 80937962070, 2804699592420, 99488140850125, 3639765997208250, 137945128982354064, 5429115690940281085, 222153735090644107080, 9454530091092393873300, 418429413013429353003828, 19248239324252460855866832
Offset: 5

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286789(n-1).

A287035 Column 5 of A286782.

Original entry on oeis.org

11, 1651, 121275, 6500086, 297418362, 12566729532, 512450827526, 20708784753650, 843099166841373, 34941950748528747, 1483982464524137025, 64851775390640963076, 2923614554266353548580, 136159567915650348083472, 6555661074441842615171244, 326380696135094118229264188
Offset: 6

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286790(n-1).

A287036 Column 6 of A286782.

Original entry on oeis.org

13, 2835, 281792, 19443460, 1103826822, 56255485594, 2706219574700, 126736375104144, 5893207936217567, 275625849530635937, 13077128859847095120, 632973909637081784520, 31373163306972014925324, 1596165353981611633618164, 83483538804312370741567896
Offset: 7

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286791(n-1).

A287037 Column 7 of A286782.

Original entry on oeis.org

15, 4556, 595764, 51891168, 3603845850, 219232218800, 12343437685332, 665813305327044, 35191072864927561, 1850193230895670056, 97757094648403065960, 5227192945431401497632, 284228769019752159341076, 15768105313056755630898144, 894491576747408847841004040
Offset: 8

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286792(n-1)

A287038 Column 8 of A286782.

Original entry on oeis.org

17, 6954, 1168650, 126339092, 10599962450, 762387192684, 49869132381312, 3080305626393693, 184192325957971320, 10844700061730812830, 636093827075502089442, 37475434473034851095166, 2230535905733638996689774, 134676258592738433119063794, 8272859344605570545948099070
Offset: 9

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Cf. A286782.

Formula

a(n) = (2*n-1)*A286793(n-1).

A286781 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1
Offset: 0

Views

Author

Gheorghe Coserea, May 14 2017

Keywords

Comments

T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the self-energy function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]    [7]  [8]
[0]  1;
[1]  2,        1;
[2]  10,       9,        1;
[3]  74,       91,       23,       1;
[4]  706,      1063,     416,      46,       1;
[5]  8162,     14193,    7344,     1350,     80,      1;
[6]  110410,   213953,   134613,   34362,    3550,    127,    1;
[7]  1708394,  3602891,  2620379,  842751,   125195,  8085,   189,   1;
[8]  29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
		

Crossrefs

For vertex and polarization functions see A286782 and A286783. For GWA of the self-energy and polarization functions see A286784 and A286785.
Columns k=0-8 give: A000698(k=0), A286786(k=1), A286787(k=2), A286788(k=3), A286789(k=4), A286790(k=5), A286791(k=6), A286792(k=7), A286793(k=8).

Programs

  • Mathematica
    max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
    Table[row[n], {n, 0, max-1}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
  • PARI
    A286781_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1;);
      y0;
    };
    concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))
    \\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y,'x)) * (1 - x*y*(1-t))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y * (1-x*y)^2 = (1 + x*y + 2*x^2*deriv(y,x)) * (1 - x*y*(1-t)), with y(0;t) = 1, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, 0<=n, 0<=k<=n.
A000698(n+1)=T(n,0), A101986(n)=T(n,n-1), A000108(n)=P_n(-1), A286794(n)=P_n(1).
Showing 1-10 of 16 results. Next