cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286794 Row sums of A286781.

Original entry on oeis.org

1, 3, 20, 189, 2232, 31130, 497016, 8907885, 176829104, 3849436062, 91187523000, 2335691914050, 64344487654800, 1897619527612692, 59667237154623280, 1993022006345620605, 70488571028815935072, 2631925423768158446390, 103469607286411235941944, 4272438866376100717458486
Offset: 0

Views

Author

Gheorghe Coserea, May 16 2017

Keywords

Examples

			A(x) = 1 + 3*x + 20*x^2 + 189*x^3 + 2232*x^4 + 31130*x^5 + ...
		

Crossrefs

Programs

  • Mathematica
    max = 22; (* B(x) is A000699(x) *) B[_] = 0;
    Do[B[x_] = x + x^2 D[B[x]^2/x, x] + O[x]^max // Normal, max];
    A[x_] = (1 - x/B[x])/x + O[x]^max;
    Drop[CoefficientList[A[x], x], -2] (* Jean-François Alcover, Oct 25 2018 *)
  • PARI
    A286781_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1;);
      y0;
    };
    Vec(A286781_ser(20,1))
    
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    A286794_seq(N) = Vec((1-1/Ser(A000699_seq(N+1)))/x);
    A286794_seq(20)

Formula

a(n) = Sum_{k=0..n} A286781(n,k).
A(x) = (1-x/A000699(x))/x, A208975(x) = 1 + x*A(-x).
a(n) ~ 4*exp(-1)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 3/(8*n) - 215/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 23 2017