A286800 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 1, 2, 7, 6, 63, 74, 10, 729, 974, 254, 8, 10113, 15084, 5376, 406, 161935, 264724, 117424, 14954, 320, 2923135, 5163276, 2697804, 481222, 23670, 112, 58547761, 110483028, 65662932, 14892090, 1186362, 21936, 1286468225, 2570021310, 1695874928, 461501018, 51034896, 1866986, 11264, 30747331223, 64547199082, 46461697760, 14603254902, 2055851560, 116329886, 1905888, 2560
Offset: 1
Examples
A(x;t) = x + (1 + 2*t)*x^2 + (7 + 6*t)*x^3 + (63 + 74*t + 10*t^2)*x^4 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [1] 1; [2] 1, 2; [3] 7, 6; [4] 63, 74, 10; [5] 729, 974, 254, 8; [6] 10113, 15084, 5376, 406; [7] 161935, 264724, 117424, 14954, 320; [8] 2923135, 5163276, 2697804, 481222, 23670, 112; [9] 58547761, 110483028, 65662932, 14892090, 1186362, 21936; [10] ...
Links
- Gheorghe Coserea, Rows n=1..123, flattened
- Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
Programs
-
Mathematica
max = 12; y0[0, ] = y1[0, ] = 0; y0[x_, t_] = x; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1/(-1 + y0[x, t]))*x*(-1 - y0[x, t]^2 - 2*y0[x, t]*(-1 + D[y0[x, t], x]) + t*x*(-1 + y0[x, t])*(2*(-1 + y0[x, t])^2 + (x*(-1 + y0[x, t]) + y0[x, t])*D[y0[x, t], x])) + O[x]^n]; y0[x_, t_] = y1[x, t]]; row[n_] := CoefficientList[SeriesCoefficient[y0[x, t], {x, 0, n}], t]; Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
PARI
A286795_ser(N, t='t) = { my(x='x+O('x^N), y0=1, y1=0, n=1); while(n++, y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0'); y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0; }; A286798_ser(N,t='t) = { my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v))); }; A286800_ser(N, t='t) = { my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2)); }; concat(apply(p->Vecrev(p), Vec(A286800_ser(12)))) \\ test: y=A286800_ser(50); x*y' == (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y)
Comments