cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286845 Every 3-digit number 'a' such that there exist two other 3-digit numbers, 'b' and 'c', such that a - b = c, and a,b,c collectively use every digit 1-9 exactly once.

Original entry on oeis.org

459, 468, 486, 495, 549, 567, 576, 594, 639, 648, 657, 675, 693, 729, 738, 783, 792, 819, 837, 846, 864, 873, 891, 918, 927, 936, 945, 954, 963, 972, 981
Offset: 1

Views

Author

Jonathan Schwartz, Aug 01 2017

Keywords

Comments

For example, 459 - 173 = 286 and 459173286 is a zeroless pandigital number.

Programs

  • Java
    import java.util.*; public class GenerateSequence {public static void main(String[] args) { Set seq = new TreeSet();
    for (long i = 987654321l; i > 123456789; i--) {Set set = new HashSet(); String number = Long.toString(i);
    if (!(number.contains("0"))) {for (int n = 0; n < 9; n++){set.add(number.charAt(n));}
    if (set.size() == 9) {
    if (Integer.valueOf(number.substring(0, 3)) - Integer.valueOf(number.substring(3, 6)) == Integer.valueOf(number.substring(6, 9))) { seq.add(Integer.valueOf(number.substring(0, 3)));} } } System.out.println(seq); } }
  • Mathematica
    With[{s = Select[Range[#/9, #] &[10^3 - 1], DigitCount[#, 10, 0] == 0 &]}, Select[s, Function[n, AnyTrue[s, Function[k, And[n - k > 0, FreeQ[#, i_ /; i == 0], Length@ # == 9] &@ Union@ Apply[Join, IntegerDigits@ {n, k, n - k}]]]]]] (* Michael De Vlieger, Aug 01 2017 *)