cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286854 Numbers k such that k == 1 or -1 (mod 6) but k does not divide the numerator of Bernoulli(2*k).

Original entry on oeis.org

55, 253, 275, 385, 605, 715, 935, 1045, 1081, 1265, 1375, 1595, 1705, 1711, 1771, 1925, 2035, 2255, 2365, 2485, 2585, 2695, 2783, 2915, 3025, 3245, 3289, 3355, 3403, 3575, 3685, 3905, 4015, 4235, 4301, 4345, 4565, 4675, 4807, 4895, 5005, 5225, 5335, 5405, 5555
Offset: 1

Views

Author

Bill Gosper, Aug 01 2017

Keywords

Crossrefs

Cf. A000367, A286853 (1st differences).

Programs

  • Maple
    isa := n -> abs(mods(n, 6)) = 1 and modp(numer(bernoulli(2*n)), n) <> 0:
    select(isa, [$1..2255]); # Peter Luschny, Aug 02 2017
  • Mathematica
    Select[Range@9999,0 != Mod[Numerator@BernoulliB[2 #], #] && MemberQ[{1, 5}, Mod[#, 6]] &]
  • PARI
    isok(n) = (((n % 6) == 1) || ((n % 6) == 5)) && (numerator(bernfrac(2*n)) % n); \\ Michel Marcus, Aug 02 2017