A286884 Odd numbers k such that the set of distinct prime divisors of k is equal to the set of distinct prime divisors of the sum of proper divisors of k.
108927, 448335, 544635, 53781261243, 92526188391, 612887145325
Offset: 1
Examples
92526188391 is a term because sigma(92526188391) - 92526188391 = 3^2*7*13^3*19*181^2 and 92526188391 = 3^2*7^2*13^2*19^3*181.
Programs
-
Mathematica
fQ[n_] := Transpose[ FactorInteger[ n]][[1]] == Transpose[ FactorInteger[ DivisorSigma[1, n] - n]][[1]]; (* Robert G. Wilson v, Aug 02 2017 *)
-
PARI
a001065(n) = if(n==0, 0, sigma(n) - n) a027748(n) = factor(n)[, 1]~ is(n) = n%2==1 && a027748(n)==a027748(a001065(n)) \\ Felix Fröhlich, Aug 02 2017
-
PARI
list(lim)=my(v=List(),f,t,o); forfactored(n=108927,lim\1, f=n[2]; if(f[1,1]==2, next); t=sigma(f)-n[1]; for(i=1,#f~, o=valuation(t,f[i,1]); if(o==0, next(2)); t/=f[i,1]^o); if(t==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Aug 02 2017
Extensions
a(4)-a(6) from Giovanni Resta, Aug 03 2017
Comments