cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286892 Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-third each of 1s, 2s and 3s (ordered occurrences rounded up/down if m*n != 0 mod 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 27, 438, 1, 6, 140, 8766, 504504, 1, 16, 1056, 189774, 33258880, 6573403050, 1, 48, 8730, 4292514, 2366403930, 1387750992012, 846182953495152, 1, 108, 63108, 99797220, 159511561440, 282061024690536, 530143167401850960, 976645996512669379710
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 15 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 and m = 2 the T(3,2) = 27 solutions are colorings of 3 X 2 matrices in 3 colors inequivalent under the action of the Klein group with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2).
Triangle begins:
=================================================
n\m | 0    1   2      3       4         5
----|--------------------------------------------
0   | 1
1   | 1    1
2   | 1    1   3
3   | 1    3   27     438
4   | 1    6   140    8766    504504
5   | 1    16  1056   189774  33258880   6573403050
		

Crossrefs

Formula

G.f.: g(x1,x2,x3)=(y1^(m*n) + 3*y2^(m*n/2))/4 for even n and m;
(y1^(m*n) + y1^n*y2^((m*n-m)/2) + 2*y2^(m*n/2))/4 for odd n and even m;
(y1^(m*n) + y1^m*y2^((m*n-n)/2) + 2*y2^(m*n/2))/4 for even n and odd m;
(y1^(m*n) + y1^n*y2^((m*n-n)/2) + y1^m*y2^((m*n-m)/2) + y1*y2^((m*n-1)/2))/4 for odd n and m; where coefficient correspond to y1=x1+x2+x3, y2=x1^2+x2^2+x3^2, and occurrences of numbers are ceiling(m*n/3) for the first k numbers and floor(m*n/3) for the last (3-k) numbers, if m*n = k mod 3.