cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286899 Array read by antidiagonals: A(n, L) is the number of closed walks of length 2L along the edges of an n-cube based at a vertex, for n >= 1 and L >= 1.

Original entry on oeis.org

1, 1, 2, 1, 8, 3, 1, 32, 21, 4, 1, 128, 183, 40, 5, 1, 512, 1641, 544, 65, 6, 1, 2048, 14763, 8320, 1205, 96, 7, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1, 32768, 1195743, 2099200, 628805, 64896, 3787, 176, 9, 1, 131072, 10761681, 33562624, 15424865
Offset: 1

Views

Author

Melvin Peralta, May 15 2017

Keywords

Examples

			A(2, 2) = 8 because at each vertex of a 2-cube (i.e., a square), there are 8 closed walks of length 2(2) = 4.
A(1, k) = 1 because at the vertex of a 1-cube, there is 1 closed walk of any length 2*k.
Array A(n, L) begins:
   1         1         1         1         1         1 ...
   2         8        32       128       512      2048 ...
   3        21       183      1641     14763    132861 ...
   4        40       544      8320    131584   2099200 ...
   5        65      1205     26465    628805  15424865 ...
   6        96      2256     64896   2086656  71172096 ...
   7       133      3787    134953   5501167 243147373 ...
		

References

  • R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, 2013.

Crossrefs

Programs

  • Maple
    A286899 := proc(n,L)
        add(binomial(n,i)*(n-2*i)^L, i=0..n) ;
        %/2^n ;
    end proc:
    for n from 1 to 7 do
        for L from 2 to 12 by 2 do
            printf("%9d ",A286899(n,L)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 22 2017
  • Mathematica
    f[n_, l_] := 1/2^n*Sum[Binomial[n, i]*(n - 2 i)^l, {i, 0, n}];
    Table[f[n - l + 1, 2 l], {n, 1, 15}, {l, n, 1, -1}] // Flatten

Formula

A(n, L) = (1/2^n)*Sum_{i=0..n} binomial(n, i)*(n - 2*i)^(2*L). (Corrected by Peter Luschny, Jul 07 2019.)