A286899 Array read by antidiagonals: A(n, L) is the number of closed walks of length 2L along the edges of an n-cube based at a vertex, for n >= 1 and L >= 1.
1, 1, 2, 1, 8, 3, 1, 32, 21, 4, 1, 128, 183, 40, 5, 1, 512, 1641, 544, 65, 6, 1, 2048, 14763, 8320, 1205, 96, 7, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1, 32768, 1195743, 2099200, 628805, 64896, 3787, 176, 9, 1, 131072, 10761681, 33562624, 15424865
Offset: 1
Examples
A(2, 2) = 8 because at each vertex of a 2-cube (i.e., a square), there are 8 closed walks of length 2(2) = 4. A(1, k) = 1 because at the vertex of a 1-cube, there is 1 closed walk of any length 2*k. Array A(n, L) begins: 1 1 1 1 1 1 ... 2 8 32 128 512 2048 ... 3 21 183 1641 14763 132861 ... 4 40 544 8320 131584 2099200 ... 5 65 1205 26465 628805 15424865 ... 6 96 2256 64896 2086656 71172096 ... 7 133 3787 134953 5501167 243147373 ...
References
- R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, 2013.
Links
- Melvin Peralta, Table of n, a(n) for n = 1..120
Programs
-
Maple
A286899 := proc(n,L) add(binomial(n,i)*(n-2*i)^L, i=0..n) ; %/2^n ; end proc: for n from 1 to 7 do for L from 2 to 12 by 2 do printf("%9d ",A286899(n,L)) ; end do: printf("\n") ; end do: # R. J. Mathar, May 22 2017
-
Mathematica
f[n_, l_] := 1/2^n*Sum[Binomial[n, i]*(n - 2 i)^l, {i, 0, n}]; Table[f[n - l + 1, 2 l], {n, 1, 15}, {l, n, 1, -1}] // Flatten
Formula
A(n, L) = (1/2^n)*Sum_{i=0..n} binomial(n, i)*(n - 2*i)^(2*L). (Corrected by Peter Luschny, Jul 07 2019.)