A286920 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 9 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 9, 1, 45, 1701, 1, 405, 134865, 97135605, 1, 3321, 10766601, 70618411521, 463255079498001, 1, 29889, 871858485, 51473762336565, 3039416437115008521, 179474497026544179696969, 1, 266085, 70607782701, 37523729625344145, 19941610769429949618201, 10597789568841677482963905405, 5632099886234793715531013441442501
Offset: 0
Examples
Triangle begins: ========================================================== n\m | 0 1 2 3 4 ----|----------------------------------------------------- 0 | 1 1 | 1 9 2 | 1 45 1701 3 | 1 405 134865 97135605 4 | 1 3321 10766601 70618411521 463255079498001 ...
Links
- María Merino, Rows n=0..33 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (9^(m*n) + 3*9^(m*n/2))/4;
for even n and odd m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 2*9^(m*n/2))/4;
for odd n and even m: T(n,m) = (9^(m*n) + 9^((m*n+m)/2) + 2*9^(m*n/2))/4;
for odd n and m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 9^((m*n+m)/2) + 9^((m*n+1)/2))/4.
Comments