A286932 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))).
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 4, 0, 0, 1, -4, 9, -4, -1, 0, 1, -5, 16, -18, 0, 1, 0, 1, -6, 25, -48, 27, 8, -1, 0, 1, -7, 36, -100, 128, -27, -24, 1, 0, 1, -8, 49, -180, 375, -320, -27, 48, 0, 0, 1, -9, 64, -294, 864, -1375, 704, 243, -64, -1, 0, 1, -10, 81, -448, 1715, -4104, 4875, -1280, -810, 48, 2, 0
Offset: 0
Examples
G.f. of column k: A(x) = 1 - k*x + k^2*x^2 - (k - 1)*k^2*x^3 + (k - 2)*k^3*x^4 - k^3*(k^2 - 3*k + 1)*x^5 + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, ... 0, 1, 4, 9, 16, 25, ... 0, 0, -4, -18, -48, -100, ... 0, -1, 0, 27, 128, 375, ... 0, 1, 8, -27, -320, -1375, ...
Links
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Formula
G.f. of column k: 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} k^j*x^(j*(j+1))/Product_{i=1..j} (1 - x^i)) / (Sum_{j>=0} k^j*x^(j^2)/Product_{i=1..j} (1 - x^i)).