cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286933 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 9, 12, 3, 0, 1, 5, 16, 36, 32, 5, 0, 1, 6, 25, 80, 135, 88, 9, 0, 1, 7, 36, 150, 384, 513, 248, 15, 0, 1, 8, 49, 252, 875, 1856, 1971, 688, 26, 0, 1, 9, 64, 392, 1728, 5125, 9024, 7533, 1920, 45, 0, 1, 10, 81, 576, 3087, 11880, 30125, 43776, 28836, 5360, 78, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 16 2017

Keywords

Examples

			G.f. of column k: A(x) = 1 + k*x + k^2*x^2 + k^2*(k + 1)*x^3 + k^3*(k + 2)*x^4 + k^3*(k^2 + 3*k + 1)*x^5 + ...
Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  0,  1,   2,    3,     4,     5,  ...
  0,  1,   4,    9,    16,    25,  ...
  0,  2,  12,   36,    80,   150,  ...
  0,  3,  32,  135,   384,   875,  ...
  0,  5,  88,  513,  1856,  5125,  ...
		

Crossrefs

Columns k=0..1 give: A000007, A005169.
Rows n=0..3 give: A000012, A001477, A000290, A011379.
Main diagonal gives A291274.
Cf. A286932.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} (-k)^j*x^(j*(j+1))/Product_{i=1..j} (1 - x^i)) / (Sum_{j>=0} (-k)^j*x^(j^2)/Product_{i=1..j} (1 - x^i)).