A286935 Number of partitions of n into primes which are the difference of two consecutive cubes (A002407).
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 2
Offset: 0
Keywords
Examples
a(56) = 2 because we have [37, 19] and [7, 7, 7, 7, 7, 7, 7, 7].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Cuban Prime
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for sequences related to centered polygonal numbers
- Index entries for sequences related to partitions
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1 - x^k), {k, Select[(Range[nmax] + 1)^3 - Range[nmax]^3, PrimeQ]}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^A002407(k)).