cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287006 a(1) = 1; a(n+1) = Sum_{k=1..n} lcm(a(k),a(n))/a(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 12, 13, 45, 36, 32, 86, 120, 75, 177, 250, 315, 281, 1194, 726, 925, 2695, 2218, 5776, 6808, 6632, 8383, 28449, 34934, 53325, 69653, 153540, 107261, 371925, 241534, 749726, 870493, 1460599, 2623154, 3576448, 4841995, 9911297, 15119248, 19818816, 20257600, 7481107, 80326829
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 31 2017

Keywords

Examples

			a(1) = 1;
a(2) = lcm(a(1),a(1))/a(1) = lcm(1,1)/1 = 1;
a(3) = lcm(a(1),a(2))/a(2) + lcm(a(2),a(2))/a(2) = lcm(1,1)/1 + lcm(1,1)/1 = 2;
a(4) = lcm(a(1),a(3))/a(3) + lcm(a(2),a(3))/a(3) + lcm(a(3),a(3))/a(3) = lcm(1,2)/2 + lcm(1,2)/2 + lcm(2,2)/2 = 3, etc.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[LCM[a[k - 1], a[n - 1]]/a[n - 1], {k, 2, n}]; Table[a[n], {n, 48}]
    a[1] = 1; a[n_] := a[n] = Sum[a[k - 1]/GCD[a[k - 1], a[n - 1]], {k, 2, n}]; Table[a[n], {n, 48}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(k)/gcd(a(k),a(n)).

A292303 a(1) = 1; a(n+1) = Sum_{k=1..n} lcm(a(k),n)/n.

Original entry on oeis.org

1, 1, 2, 4, 4, 12, 9, 33, 50, 78, 99, 173, 264, 658, 570, 1056, 1099, 4113, 2443, 10129, 18866, 23226, 39775, 102665, 171529, 256039, 610467, 815809, 1795028, 3854202, 3044396, 10752800, 5509162, 22665306, 25847226, 66558954, 25219183, 167266731, 264535960, 163511658, 346473322, 1109093102
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2017

Keywords

Examples

			a(1) = 1;
a(2) = lcm(a(1),1)/1 = lcm(1,1)/1 = 1;
a(3) = lcm(a(1),2)/2 + lcm(a(2),2)/2 = lcm(1,2)/2 + lcm(1,2)/2 = 2;
a(4) = lcm(a(1),3)/3 + lcm(a(2),3)/3 + lcm(a(3),3)/3 = lcm(1,3)/3 + lcm(1,3)/3 + lcm(2,3)/3 = 4, etc.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[LCM[a[k - 1], n - 1]/(n - 1), {k, 2, n}]; Table[a[n], {n, 42}]
    a[1] = 1; a[n_] := a[n] = Sum[a[k - 1]/GCD[a[k - 1], n - 1], {k, 2, n}]; Table[a[n], {n, 42}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(k)/gcd(a(k),n).
Showing 1-2 of 2 results.