A286947 Triangle read by rows in which row(n) = {T(n, k)} is the lexicographically earliest list of n numbers such that adding 1 to some T(n, k) gives a row of numbers each divisible by prime(k).
1, 3, 2, 15, 20, 24, 105, 140, 84, 90, 1155, 770, 924, 1980, 2100, 15015, 10010, 24024, 4290, 13650, 23100, 255255, 340340, 204204, 364650, 464100, 353430, 60060, 4849845, 6466460, 5819814, 1385670, 3527160, 5969040, 570570, 510510, 111546435, 74364290, 44618574, 127481640, 81124680, 102965940, 39369330, 58708650, 29099070
Offset: 1
Examples
Row(1): [1] Row(2): [3, 2] Row(3): [15, 20, 24] Row(4): [105, 140, 84, 90] Row(5): [1155, 770, 924, 1980, 2100] Row(6): [15015, 10010, 24024, 4290, 13650, 23100] Row(7): [255255, 340340, 204204, 364650, 464100, 353430, 60060] Row(8): [4849845, 6466460, 5819814, 1385670, 3527160, 5969040, 570570, 510510] Row(4) = [105, 140, 84, 90]. Adding 1 to T(4, 1) gives [106,140,84,90], all elements divisible by prime(1) = 2. Adding 1 to T(4, 2) gives [105,141,84,90], all elements divisible by prime(2) = 3. Adding 1 to T(4, 3) gives [105,140,85,90], all elements divisible by prime(3) = 5. Adding 1 to T(4, 4) gives [105,140,84,91], all elements divisible by prime(4) = 7. The sum of elements in row 3 is 15 + 20 + 24 = 59. 59 + 1 = 60, a multiple of A002110(3) = 30.
Programs
-
PARI
row(n) = my(pr=primes(n), p = prod(i=1, #pr, pr[i]), res=vector(n, i, lift(chinese(Mod(-1, pr[i]), Mod(0, p/pr[i]))))); res
Formula
T(n, 1) = A002110(n) / 2.
For n >= 2, T(n,n) = A075306(n-1) - 1. - Peter Munn, Jan 13 2018
Extensions
Name corrected by Peter Munn, Jan 12 2018
Comments