A286950 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)/(1 - x^(k*j))^k.
1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, -1, 1, 0, 0, 1, -1, -1, -2, 0, 1, 1, -1, -1, 3, 3, 0, 0, 1, -1, -1, 0, -3, -4, 0, 1, 1, -1, -1, 0, 4, -2, 5, 0, 0, 1, -1, -1, 0, 0, -3, 9, -7, 0, 0, 1, -1, -1, 0, 0, 6, -4, -8, 10, 0, 0, 1, -1, -1, 0, 0, 1, -5, 1, -6, -13, 0, 0, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, 0, -1, -1, -1, ... -1, 0, 1, -1, -1, ... 0, 0, -2, 3, 0, ... 0, 0, 3, -3, 4, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
G.f. of column k: Product_{j>=1} (1 - x^j)/(1 - x^(k*j))^k.