A287022 Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with a sixth of 1s, 2s, 3s, 4s, 5s and 6s (ordered occurrences rounded up/down if n*m != 0 mod 6).
1, 1, 1, 1, 1, 1, 1, 1, 180, 11358, 1, 1, 2520, 1872000, 1009008000, 1, 1, 56712, 189197280, 814774020480, 4058338214422800, 1, 360, 1871640, 34306401600, 811667639890800, 22208161516294279680, 667544434159390230643200
Offset: 0
Examples
For n=3 and m=2 the T(3,2)=180 solutions are colorings of 3 X 2 matrices in 6 colors inequivalent under the action of the Klein group with exactly 1 occurrence of each color (coefficient of x1^1 x2^1 x3^1 x4^1 x5^1 x6^1). Triangle begins: ============================================================ n\m | 0 1 2 3 4 5 ----|------------------------------------------------------- 0 | 1 1 | 1 1 2 | 1 1 1 3 | 1 1 180 11358 4 | 1 1 2520 1872000 1009008000 5 | 1 1 56712 189197280 814774020480 4058338214422800
Links
- María Merino, Rows n=0..37 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
G.f.: g(x1,x2,x3,x4,x5,x6)=(y1^(m*n) + 3*y2^(m*n/2))/4 for even n and m;
(y1^(m*n) + y1^n*y2^((m*n-m)/2) + 2*y2^(m*n/2))/4 for odd n and even m;
(y1^(m*n) + y1^m*y2^((m*n-n)/2) + 2*y2^(m*n/2))/4 for even n and odd m; where coefficient correspond to y1=Sum_{i=1..6} x_i, y2=Sum_{i=1..6} x_i^2, and occurrences of numbers are ceiling(m*n/6) for the first k numbers and floor(m*n/6) for the last (6-k) numbers, if m*n = k mod 6.
Comments