cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287039 Row sums of A286782.

Original entry on oeis.org

1, 1, 9, 100, 1323, 20088, 342430, 6461208, 133618275, 3006094768, 73139285178, 1914937983000, 53720914023150, 1608612191370000, 51235727245542684, 1730349877484075120, 61783682196714238755, 2326122843950925857376, 92117389831885545623650, 3828375469597215729851928
Offset: 0

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    max = 21; (* B(x) is A000699(x) *) B[_] = 0;
    Do[B[x_] = x + x^2 D[B[x]^2/x, x] + O[x]^max // Normal, max];
    Join[{1}, Drop[CoefficientList[(1-x/B[x])/x + O[x]^max, x], -2] Table[2n-1, {n, max-2}]] (* Jean-François Alcover, Oct 25 2018, from PARI *)
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    A286794_seq(N) = Vec((1-1/Ser(A000699_seq(N+1)))/x);
    A287039_seq(N) = {
      my(s = A286794_seq(N));
      concat(1, vector(#s, n, (2*n-1)*s[n]));
    };
    A287039_seq(19)

Formula

a(n) ~ 4*exp(-1)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 19/(8*n) - 23/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 21 2017