cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287045 a(n) is the number of size n affine closed terms of variable size 0.

Original entry on oeis.org

0, 1, 2, 8, 29, 140, 661, 3622, 19993, 120909, 744890, 4887401, 32795272, 230728608, 1661537689, 12426619200, 95087157771, 750968991327, 6062088334528, 50288003979444, 425889463252945, 3694698371069796, 32683415513480237, 295430131502604353, 2719833636188015674, 25536232370225996575
Offset: 0

Views

Author

Gheorghe Coserea, May 28 2017

Keywords

Examples

			A(x) = x + 2*x^2 + 8*x^3 + 29*x^4 + 140*x^5 + ...
		

Crossrefs

Column zero of A287040.

Programs

  • Mathematica
    a[n_] := a[n] = If[n<3, n, (3a[n-1] + (6n-10) a[n-2] - a[n-3] + 2b[n-1] - b[n-2] - b[n-3])/2]; b[n_] := Sum[a[k] a[n-k], {k, 1, n-1}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 13 2018 *)
  • PARI
    A287040_ser(N) = {
      my(x='x+O('x^N), t='t, F0=t, F1=0, n=1);
      while(n++,
        F1 = t + x*F0^2 + x*deriv(F0, t) + x*F0;
        if (F1 == F0, break()); F0 = F1; ); F0;
    };
    concat(0, Vec(subst(A287040_ser(26), 't, 0)))
    
  • PARI
    A287045_seq(N) = {
      my(a = vector(N), b=vector(N), t1=0);
      a[1]=1; a[2]=2; a[3]=8; b[1]=0; b[2]=1; b[3]=4;
      for (n=4, N, b[n] = sum(k=1, n-1, a[k]*a[n-k]);
        t1 = 3*a[n-1] + (6*n-10)*a[n-2] - a[n-3];
        a[n] = (t1 + 2*b[n-1] - b[n-2] - b[n-3])/2);
      concat(0,a);
    };
    A287045_seq(25)
    \\ test: y=Ser(A287045_seq(200)); 0 == 6*x^3*y' - x*(x-1)*(x+2)*y^2 - (x^3-2*x^2-3*x+2)*y + x^2 + 2*x

Formula

A(x) = A287040(x;0).
a(n) = (3*a(n-1) + (6*n-10)*a(n-2) - a(n-3) + 2*b(n-1) - b(n-2) - b(n-3))/2, where b(n) = Sum_{k=1..n-1} a(k)*a(n-k).
0 = 6*x^3*deriv(y,x) - x*(x-1)*(x+2)*y^2 - (x^3-2*x^2-3*x+2)*y + x^2 + 2*x, where y(x) is the g.f.