A287045 a(n) is the number of size n affine closed terms of variable size 0.
0, 1, 2, 8, 29, 140, 661, 3622, 19993, 120909, 744890, 4887401, 32795272, 230728608, 1661537689, 12426619200, 95087157771, 750968991327, 6062088334528, 50288003979444, 425889463252945, 3694698371069796, 32683415513480237, 295430131502604353, 2719833636188015674, 25536232370225996575
Offset: 0
Keywords
Examples
A(x) = x + 2*x^2 + 8*x^3 + 29*x^4 + 140*x^5 + ...
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..301
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda terms, arXiv:1702.03085 [cs.DM], 2017.
Programs
-
Mathematica
a[n_] := a[n] = If[n<3, n, (3a[n-1] + (6n-10) a[n-2] - a[n-3] + 2b[n-1] - b[n-2] - b[n-3])/2]; b[n_] := Sum[a[k] a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 13 2018 *)
-
PARI
A287040_ser(N) = { my(x='x+O('x^N), t='t, F0=t, F1=0, n=1); while(n++, F1 = t + x*F0^2 + x*deriv(F0, t) + x*F0; if (F1 == F0, break()); F0 = F1; ); F0; }; concat(0, Vec(subst(A287040_ser(26), 't, 0)))
-
PARI
A287045_seq(N) = { my(a = vector(N), b=vector(N), t1=0); a[1]=1; a[2]=2; a[3]=8; b[1]=0; b[2]=1; b[3]=4; for (n=4, N, b[n] = sum(k=1, n-1, a[k]*a[n-k]); t1 = 3*a[n-1] + (6*n-10)*a[n-2] - a[n-3]; a[n] = (t1 + 2*b[n-1] - b[n-2] - b[n-3])/2); concat(0,a); }; A287045_seq(25) \\ test: y=Ser(A287045_seq(200)); 0 == 6*x^3*y' - x*(x-1)*(x+2)*y^2 - (x^3-2*x^2-3*x+2)*y + x^2 + 2*x
Formula
A(x) = A287040(x;0).
a(n) = (3*a(n-1) + (6*n-10)*a(n-2) - a(n-3) + 2*b(n-1) - b(n-2) - b(n-3))/2, where b(n) = Sum_{k=1..n-1} a(k)*a(n-k).
0 = 6*x^3*deriv(y,x) - x*(x-1)*(x+2)*y^2 - (x^3-2*x^2-3*x+2)*y + x^2 + 2*x, where y(x) is the g.f.