A287048 a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 1.
291720, 22764165, 875029804, 22620890127, 448035881592, 7302676928666, 102432266545800, 1274461449989715, 14373136466094880, 149314477245194262, 1446563778096423816, 13196809961724011350, 114253624700659216080, 944690705838217837620, 7498935691376059259344, 57398464959432306918747
Offset: 9
Keywords
Links
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Crossrefs
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); a[n_] := Q[n, 8, 1]; Table[a[n], {n, 9, 25}] (* Jean-François Alcover, Oct 18 2018 *)
-
PARI
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x); A287048_ser(N) = { my(y = A000108_ser(N+1)); y*(y-1)^9*(9370183*y^8 + 52321971*y^7 - 83853806*y^6 - 93946092*y^5 + 189910936*y^4 - 57493776*y^3 - 31383264*y^2 + 16878912*y - 1513344)/(y-2)^26; }; Vec(A287048_ser(16))