A287050 Square array read by antidiagonals upwards: M(n,k) is the initial occurrence of first prime p1 of consecutive primes p1, p2, where p2 - p1 = 2*k, and p1, p2 span a multiple of 10^n, n>=1, k>=1.
29, 599, 7, 2999, 97, 47, 179999, 1999, 1097, 89, 23999999, 69997, 21997, 1193, 139, 23999999, 199999, 369997, 23993, 691, 199, 29999999, 19999999, 3199997, 149993, 10993, 199, 113, 17399999999, 19999999, 6999997, 1199999, 139999, 997, 293, 1831
Offset: 1
Examples
The matrix representation of the sequence with row n indicating the spanned power of 10 and column k indicating the difference of 2*k between the first pair of consecutive primes spanning a multiple of 10^n: -------------------------------------------------------------------------- n\k 1 2 3 4 5 -------------------------------------------------------------------------- 1 | 29 7 47 89 139 2 | 599 97 1097 1193 691 3 | 2999 1999 21997 23993 10993 4 | 179999 69997 369997 149993 139999 5 | 23999999 199999 3199997 1199999 1999993 6 | 23999999 19999999 6999997 38999993 1999993 7 | 29999999 19999999 159999997 659999999 379999999 8 | 17399999999 7699999999 9399999997 8999999993 499999993 9 | 92999999999 135999999997 85999999997 8999999993 28999999999 10| 569999999999 519999999997 369999999997 29999999993 819999999997 ... Every column in the matrix is nondecreasing. For the first and fourth columns, ceiling(M[n,1]/10^n) and ceiling(M[n,4]/10^n) are divisible by 3, for all n>=1 (see A158277 and A287049).
Crossrefs
Formula
M(n,k) = min( p_i : p_(i+1) - p_i = 2*k, p_i and p_(i+1) consecutive primes and p_i < m*10^n < p_(i+1) for some integer m) where p_j is the j-th prime, n>=1 and k>=1.
Comments