A287055 Numbers n such that uphi(n) = uphi(n+1), where uphi(n) is the unitary totient function (A047994).
1, 20, 35, 143, 194, 208, 740, 1119, 1220, 1299, 1419, 1803, 1892, 2232, 2623, 3705, 3716, 3843, 4995, 5031, 5183, 5186, 5635, 7868, 10659, 17948, 18507, 18914, 21007, 23616, 25388, 25545, 30380, 30744, 31599, 32304, 34595, 37820, 38024, 47067, 60767, 70394
Offset: 1
Keywords
Examples
uphi(20) = uphi(21) = 12, thus 20 is in the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2198 (terms 1..207 from Amiram Eldar)
Programs
-
Mathematica
uphi[n_] := If[n==1,1,(Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a={}; u1=0; For[k=0, k<10^5, k++; u2=uphi[k]; If[u1==u2, a = AppendTo[a, k-1]]; u1=u2]; a
-
PARI
uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1); isok(n) = uphi(n+1) == uphi(n); \\ Michel Marcus, May 20 2017
-
Python
from math import prod from sympy import factorint A287055_list, a, n = [], 1, 1 while n < 10**5: b = prod(p**e-1 for p, e in factorint(n+1).items()) if a == b: A287055_list.append(n) a, n = b, n+1 # Chai Wah Wu, Sep 24 2021
Comments