cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287057 a(n) = 2*n^2 + n - (n+1) mod 2.

Original entry on oeis.org

3, 9, 21, 35, 55, 77, 105, 135, 171, 209, 253, 299, 351, 405, 465, 527, 595, 665, 741, 819, 903, 989, 1081, 1175, 1275, 1377, 1485, 1595, 1711, 1829, 1953, 2079, 2211, 2345, 2485, 2627, 2775, 2925, 3081, 3239, 3403, 3569, 3741, 3915, 4095
Offset: 1

Views

Author

Dimitris Valianatos, Jun 24 2017

Keywords

Comments

Let r(n) = (a(n)-1)/a(n) if n mod 2 = 1, (a(n)+1)/a(n) otherwise; then Product_{n>=1} r(n) = (2/3) * (10/9) * (20/21) * (36/35) * (54/55) * (78/77) * (104/105) * (136/135) * ... = agm(1,sqrt(2))^2/2 = 0.7177700110461299978211932237.

Crossrefs

Programs

  • Magma
    [2*n^2+n-(n+1) mod 2: n in [1..60]]; // Vincenzo Librandi, Aug 12 2017
  • Maple
    seq(2*n^2 + n - ((n+1) mod 2), n = 1 .. 30); # Robert Israel, Aug 11 2017
  • Mathematica
    a[n_] := 2 n^2 + n - Mod[n + 1, 2]; Array[a, 50] (* Robert G. Wilson v, Aug 10 2017 *)
  • PARI
    {for(n=1,100,print1(2*n^2+n-(n+1)%2", "))}
    

Formula

G.f.: x*(3+3*x+3*x^2-x^3)/((1+x)*(1-x)^3). - Robert Israel, Aug 11 2017