cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287072 Start with 0 and repeatedly substitute 0->01, 1->21, 2->0.

Original entry on oeis.org

0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1
Offset: 1

Views

Author

Clark Kimberling, May 21 2017

Keywords

Comments

A fixed point of the morphism 0->01, 1->21, 2->0. Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 3.079595623491438786010417...,
V = 2.324717957244746025960908...,
W = U + 1 = 4.079595623491438786010417....
Since the morphism 0->01, 1->21, 2->0 is the time reversal of the morphism 0->10, 1->12 2->0, which has fixed point A287104, in particular the incidence matrices of these two morphisms are equal. Thus the algebraic expressions found for U, V and W in A287104 do also apply to the U, V and W above. - Michel Dekking, Sep 15 2019
If n >=2, then u(n) - u(n-1) is in {2,3,4}, v(n) - v(n-1) is in {2,3}, and w(n) - w(n-1) is in {3,4,5}.

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> 0}] &, {0}, 10] (* A287072 *)
    Flatten[Position[s, 0]] (* A287073 *)
    Flatten[Position[s, 1]] (* A287074 *)
    Flatten[Position[s, 2]] (* A287075 *)
    SubstitutionSystem[{0->{0,1},1->{2,1},2->{0}},{0},{8}][[1]] (* Harvey P. Dale, Feb 18 2025 *)

A287074 Positions of 1 in A287072.

Original entry on oeis.org

2, 4, 7, 9, 12, 14, 16, 18, 21, 23, 25, 28, 30, 32, 34, 37, 39, 41, 44, 46, 49, 51, 53, 56, 58, 60, 62, 65, 67, 69, 72, 74, 77, 79, 81, 83, 86, 88, 90, 93, 95, 98, 100, 102, 105, 107, 109, 111, 114, 116, 118, 121, 123, 126, 128, 130, 132, 135, 137, 139, 142
Offset: 1

Views

Author

Clark Kimberling, May 21 2017

Keywords

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> 0}] &, {0}, 10] (* A287072 *)
    Flatten[Position[s, 0]] (* A287073 *)
    Flatten[Position[s, 1]] (* A287074 *)
    Flatten[Position[s, 2]] (* A287075 *)

A287075 Positions of 2 in A287072.

Original entry on oeis.org

3, 6, 11, 15, 20, 24, 27, 31, 36, 40, 43, 48, 52, 55, 59, 64, 68, 71, 76, 80, 85, 89, 92, 97, 101, 104, 108, 113, 117, 120, 125, 129, 134, 138, 141, 145, 150, 154, 157, 162, 166, 171, 175, 178, 183, 187, 190, 194, 199, 203, 206, 211, 215, 220, 224, 227, 231
Offset: 1

Views

Author

Clark Kimberling, May 21 2017

Keywords

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> 0}] &, {0}, 10] (* A287072 *)
    Flatten[Position[s, 0]] (* A287073 *)
    Flatten[Position[s, 1]] (* A287074 *)
    Flatten[Position[s, 2]] (* A287075 *)
Showing 1-3 of 3 results.