cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287090 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).

Original entry on oeis.org

1, 1, 10, 46, 191, 740, 2912, 10941, 40345, 144703, 509693, 1761738, 5993434, 20076668, 66329914, 216307961, 696990583, 2220665661, 7000973556, 21853019072, 67575353580, 207111103623, 629440843762, 1897670845715, 5677604053474, 16863081962184, 49736388996376, 145714874857754
Offset: 0

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

Euler transform of A000537.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)^2/4), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).
a(n) ~ exp(-Zeta(3) / (16*Pi^2) + 741*Zeta(5) / (1600*Pi^4) - 250047*Zeta(5)^3 / (5*Pi^14) + 10207918728 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/2 + (-7*(7/2)^(1/6) * Pi / (3200 * 3^(2/3)) + 9261 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^2 / (40*Pi^9) - 22754277 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^4 / (2*Pi^19)) * n^(1/6) + (-21 * 3^(2/3) * (7/2)^(1/3) * Zeta(5) / (20*Pi^4) + 31752 * 6^(2/3) * 7^(1/3) * Zeta(5)^3/Pi^14) * n^(1/3) + (sqrt(7/2)*Pi/60 - 567*sqrt(14)*Zeta(5)^2 / Pi^9) * sqrt(n) + 9 * 3^(1/3) * (7/2)^(2/3) * Zeta(5) / Pi^4 * n^(2/3) + 2 * (2/7)^(1/6) * 3^(2/3) * Pi/5 * n^(5/6)) / (2^(1321/1440) * 3^(479/720) * 7^(119/1440) * n^(839/1440) * Pi^(1/240)). - Vaclav Kotesovec, Nov 09 2017