A287513 Numbers whose cyclic permutations are pairwise coprime.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 19, 23, 25, 29, 31, 32, 34, 35, 37, 38, 41, 43, 47, 49, 52, 53, 56, 58, 59, 61, 65, 67, 71, 73, 74, 76, 79, 83, 85, 89, 91, 92, 94, 95, 97, 98, 112, 113, 115, 116, 118, 119, 121, 125, 127, 131, 133, 134, 136, 137
Offset: 1
Examples
The cyclic permutations of 5992 are: - 5992 = 2^3 * 7 * 107 - 9925 = 5^2 * 397 - 9259 = 47 * 197 - 2599 = 23 * 113. These values are pairwise coprime, hence 5992 appear in the sequence. The cyclic permutations of 5776 are: - 5776 = 2^4 * 19^2, - 7765 = 5 * 1553, - 7657 = 13 * 19 * 31, - 6577 = 6577. gcd(5776, 7657) = 19, hence 5776 does not appear in the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first 2000 terms
- Rémy Sigrist, Scatterplot of the first 10000 terms
- Rémy Sigrist, Scatterplot of the first 150000 terms
Programs
-
Mathematica
A287513Q[k_] := k < 10 || CoprimeQ @@ Map[FromDigits, NestList[RotateLeft, #, Length[#] - 1] & [IntegerDigits[k]]]; Select[Range[200], A287513Q] (* Paolo Xausa, Aug 27 2025 *)
-
PARI
is(n) = my (p=n, l=#digits(n)); for (k=1, l-1, n = (n\10) + (n%10)*(10^(l-1)); if (gcd(n, p)>1, return (0)); p = lcm(n, p);); return (1)
Comments