cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287206 Triangle read by rows: T(n,k) is the number of direct sum decompositions of a finite vector space of n dimensions over GF(2) that have exactly k subspaces of dimension 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 1, 28, 0, 28, 281, 120, 1680, 0, 840, 9921, 139376, 29760, 277760, 0, 83328, 16078337, 20000736, 140491008, 19998720, 139991040, 0, 27998208, 13596908545, 130684723136, 81282991104, 380636971008, 40637399040, 227569434624, 0, 32509919232, 191426147495937, 443803094908800, 2132774681579520, 884358943211520, 3105997683425280, 265280940933120, 1237977724354560, 0, 132640470466560
Offset: 0

Views

Author

Geoffrey Critzer, May 21 2017

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     0,      1;
     1,      0,     3;
     1,     28,     0,     28,
   281,    120,  1680,      0,  840;
  9921, 139376, 29760, 277760,    0, 83328;
  ...
		

Crossrefs

Cf. A270881 (row sums), A053601 (main diagonal), A289543 (column k=0).

Programs

  • Mathematica
    nn = 8; g[n_] := QFactorial[n, q]*(q - 1)^n*q^Binomial[n, 2] /. q -> 2; e[u_] := Sum[u^r/g[r], {r, 0, nn}];
    Table[Table[(Table[g[n], {n, 0, nn}] CoefficientList[  Series[Exp[e[u] - 1 - u + u t], {u, 0, nn}], {u, t}])[[n,
         k]], {k, 1, n}], {n, 1, nn + 1}] // Grid

Formula

Sum_{n>=0} T(n,k)*u^n/g(n)*t^k = exp(Sum_{r>=0} u^r/g(r) - 1 - u + t*u) where g = A002884.