cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357538 a(n) = coefficient of x^n in A(x) such that A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 308, 1264, 5332, 22994, 100896, 449004, 2021712, 9193509, 42161222, 194768936, 905522052, 4233712140, 19893553120, 93894821200, 444952447944, 2116220266360, 10098086643002, 48330679370584, 231954451580616, 1116046254269592, 5382402925982248
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2022

Keywords

Comments

Is this sequence the same as A287211?

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 308*x^6 + 1264*x^7 + 5332*x^8 + 22994*x^9 + 100896*x^10 + ...
where A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3.
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 117*x^4 + 462*x^5 + 1895*x^6 + 7998*x^7 + 34491*x^8 + 151341*x^9 + 673506*x^10 + ...
		

Crossrefs

Programs

  • Maple
    A357538 := proc(n)
        option remember ;
        if n < 0 then
            0;
        elif n <= 1 then
            1;
        else
            a := 0 ;
            for j from 0 to n-1 do
                a := a + procname(n-1-j)*add(procname(i)*procname(j-i),i=0..j)
            end do:
            a := 2*a/3 ;
            if modp(n-1,3) = 0 then
                a := a+procname((n-1)/3)/3 ;
            end if;
            a ;
        end if ;
    end proc:
    seq(A357538(n),n=0..20) ; # R. J. Mathar, Dec 19 2022
  • PARI
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*(2*A^3 + subst(A,x,x^3))/3 +x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n, my(A=vector(n+1)); A[1]=1; A[2]=1; for(k=1, n-1, A[k+2] = sum(j=1, k, 2*j*A[j+1]*(sum(i=0, k-j, A[i+1]*A[k-j-i+1])))/k + (1/3)*if(k%3, 0, A[k/3+1])); A[n+1], 1)} \\ after Jianing Song in A000625
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3.
a(0) = a(1) = 1; a(n+1) = a(n/3)/3 + 2*(Sum_{j=0..n} a(n-j)*(Sum_{i=0..j} a(i)*a(j-i)))/3 for n >= 1, where a(k) = 0 if k not an integer (see formula and comment by Emeric Deutsch in A000625). (corrected by R. J. Mathar, Dec 19 2022)
Showing 1-1 of 1 results.