cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287216 Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks are <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 2, 5, 14, 23, 1, 1, 1, 2, 5, 15, 44, 66, 1, 1, 1, 2, 5, 15, 51, 152, 210, 1, 1, 1, 2, 5, 15, 52, 191, 571, 733, 1, 1, 1, 2, 5, 15, 52, 202, 780, 2317, 2781, 1, 1, 1, 2, 5, 15, 52, 203, 857, 3440, 10096, 11378, 1
Offset: 0

Views

Author

Alois P. Heinz, May 21 2017

Keywords

Examples

			A(4,0) = 1: 1234.
A(4,1) = 9: 1234, 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(4,2) = 14: 1234, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(5,1) = 23: 12345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 145|2|3, 14|25|3, 14|2|35, 15|24|3, 1|245|3, 1|24|35, 15|2|34, 1|25|34, 1|2|345, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,   2,   2,   2,   2,   2,   2,   2, ...
  1,   4,   5,   5,   5,   5,   5,   5, ...
  1,   9,  14,  15,  15,  15,  15,  15, ...
  1,  23,  44,  51,  52,  52,  52,  52, ...
  1,  66, 152, 191, 202, 203, 203, 203, ...
  1, 210, 571, 780, 857, 876, 877, 877, ...
		

Crossrefs

Columns k=0-10 give: A000012, A026898(n-1) for n>0, A287252, A287253, A287254, A287255, A287256, A287257, A287258, A287259, A287260.
Main diagonal gives A000110.

Programs

  • Maple
    b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
         `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
        end:
    A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
    A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A287215(n,j).

A322882 Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals nine.

Original entry on oeis.org

0, 1, 259, 7851, 123693, 1517480, 16628928, 172861375, 1757583339, 17780116911, 180778826049, 1858914009077, 19407229306905, 206203531592425, 2232778235440364, 24655217395787251, 277719538910592762, 3191229583066629810, 37404691679158439649
Offset: 9

Views

Author

Alois P. Heinz, Dec 29 2018

Keywords

Crossrefs

Column k=9 of A287215.

Programs

  • Maple
    b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
         `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
        end:
    A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
    a:= n-> (k-> A(n, k)-A(n, k-1))(9):
    seq(a(n), n=9..30);

Formula

a(n) = A287259(n) - A287258(n).

A322883 Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals ten.

Original entry on oeis.org

0, 1, 515, 22253, 430909, 6094476, 74507486, 847129333, 9296465127, 100540964675, 1085004090887, 11775039127122, 129155075413877, 1436488582202316, 16235344928131625, 186710546094489052, 2186538096666720967, 26085011069325363939, 317049671003606985326
Offset: 10

Views

Author

Alois P. Heinz, Dec 29 2018

Keywords

Crossrefs

Column k=10 of A287215.

Programs

  • Maple
    b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
         `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
        end:
    A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
    a:= n-> (k-> A(n, k)-A(n, k-1))(10):
    seq(a(n), n=10..30);

Formula

a(n) = A287260(n) - A287259(n).
Showing 1-3 of 3 results.