A287274 Array read by antidiagonals: T(m,n) = number of dominating sets in the lattice (rook) graph K_m X K_n.
1, 3, 3, 7, 11, 7, 15, 51, 51, 15, 31, 227, 421, 227, 31, 63, 963, 3615, 3615, 963, 63, 127, 3971, 30517, 59747, 30517, 3971, 127, 255, 16131, 252231, 989295, 989295, 252231, 16131, 255, 511, 65027, 2054941, 16219187, 32260381, 16219187, 2054941, 65027, 511
Offset: 1
Examples
Array begins: ============================================================================= m\n| 1 2 3 4 5 6 7 ---|------------------------------------------------------------------------- 1 | 1 3 7 15 31 63 127... 2 | 3 11 51 227 963 3971 16131... 3 | 7 51 421 3615 30517 252231 2054941... 4 | 15 227 3615 59747 989295 16219187 263425695... 5 | 31 963 30517 989295 32260381 1048220463 33884452717... 6 | 63 3971 252231 16219187 1048220463 67680006971 4358402146791... 7 | 127 16131 2054941 263425695 33884452717 4358402146791 559876911043381... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..780
- Stephan Mertens, Domination Polynomial of the Rook Graph, JIS 27 (2024) 24.3.7; arXiv:2401.00716 [math.CO], 2024.
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Rook Graph
Crossrefs
Programs
-
Mathematica
b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}]; a[m_, n_] := (2^n - 1)^m + Sum[ b[i, n]*Binomial[m, i], {i, 1, m - 1}]; Table[a[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 12 2017, adapted from PARI *)
-
PARI
b(m,n)=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n); a(m,n)=(2^n-1)^m + sum(i=1,m-1,b(i,n)*binomial(m,i)); for (i=1,7,for(j=1,7, print1(a(i,j), ",")); print);
Formula
T(m, n) = (2^n-1)^m + Sum_{i=1..m-1} binomial(m,i) * A183109(i,n).
Comments