cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287274 Array read by antidiagonals: T(m,n) = number of dominating sets in the lattice (rook) graph K_m X K_n.

Original entry on oeis.org

1, 3, 3, 7, 11, 7, 15, 51, 51, 15, 31, 227, 421, 227, 31, 63, 963, 3615, 3615, 963, 63, 127, 3971, 30517, 59747, 30517, 3971, 127, 255, 16131, 252231, 989295, 989295, 252231, 16131, 255, 511, 65027, 2054941, 16219187, 32260381, 16219187, 2054941, 65027, 511
Offset: 1

Views

Author

Andrew Howroyd, May 22 2017

Keywords

Comments

A set of vertices can be represented as an m X n binary matrix. If all rows contain at least one 1 then regardless of what is in each row the set will form a dominating set giving (2^n-1)^m solutions. Otherwise if only iA183109(i,n) solutions.

Examples

			Array begins:
=============================================================================
m\n|   1     2       3         4           5             6               7
---|-------------------------------------------------------------------------
1  |   1     3       7        15          31            63             127...
2  |   3    11      51       227         963          3971           16131...
3  |   7    51     421      3615       30517        252231         2054941...
4  |  15   227    3615     59747      989295      16219187       263425695...
5  |  31   963   30517    989295    32260381    1048220463     33884452717...
6  |  63  3971  252231  16219187  1048220463   67680006971   4358402146791...
7  | 127 16131 2054941 263425695 33884452717 4358402146791 559876911043381...
...
		

Crossrefs

Main diagonal is A287065.
Row 2 is A191341.
Cf. A183109, A088699 (independent vertex sets), A290632.

Programs

  • Mathematica
    b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}];
    a[m_, n_] := (2^n - 1)^m + Sum[ b[i, n]*Binomial[m, i], {i, 1, m - 1}];
    Table[a[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 12 2017, adapted from PARI *)
  • PARI
    b(m,n)=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
    a(m,n)=(2^n-1)^m + sum(i=1,m-1,b(i,n)*binomial(m,i));
    for (i=1,7,for(j=1,7, print1(a(i,j), ",")); print);

Formula

T(m, n) = (2^n-1)^m + Sum_{i=1..m-1} binomial(m,i) * A183109(i,n).