cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287304 Primes that can be generated by the concatenation in base 5, in ascending order, of two consecutive integers read in base 10.

Original entry on oeis.org

7, 13, 19, 131, 157, 313, 443, 521, 547, 599, 3529, 3907, 4159, 4663, 4789, 5167, 5419, 5923, 6301, 6427, 6553, 6679, 7057, 7309, 7561, 7687, 8191, 8317, 8443, 8821, 9199, 9829, 10333, 10459, 10711, 10837, 11467, 11593, 11719, 11971, 12097, 12601, 12853, 12979
Offset: 1

Views

Author

Paolo P. Lava, May 23 2017

Keywords

Examples

			1 and 2 in base 5 are 1 and 2 and concat(1,2) = 12 in base 10 is 7;
6 and 7 in base 5 are 11 and 12 and concat(11,12) = 1112 in base 10 is 157.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,5),i=1..1000);
  • Mathematica
    With[{b = 5}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 120, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)
    Select[FromDigits[Flatten[#],5]&/@Partition[IntegerDigits[Range[150],5],2,1],PrimeQ] (* Harvey P. Dale, Nov 25 2020 *)