cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287310 Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.

Original entry on oeis.org

19, 37, 521, 911, 1171, 1301, 1951, 2081, 2341, 2731, 2861, 3121, 3251, 3511, 32833, 35911, 37963, 43093, 44119, 46171, 53353, 56431, 57457, 59509, 61561, 68743, 71821, 77977, 85159, 87211, 88237, 90289, 95419, 99523, 100549, 114913, 117991, 123121, 124147, 126199
Offset: 1

Views

Author

Paolo P. Lava, May 24 2017

Keywords

Comments

Primes of the form (1+8^k) m + 1 where m+1 < 8^k < 8(m+1). - Robert Israel, May 24 2017

Examples

			2 and 3 in base 8 are 2_8 and 3_8, and concat(2,3) = 23_8 in base 10 is 19;
8 and 9 in base 8 are 10_8 and 11_8 and concat(10,11) = 1011_8 in base 10 is 521.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,8),i=1..1000);
  • Mathematica
    With[{b = 8}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 250, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 25 2017 *)