A287310 Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.
19, 37, 521, 911, 1171, 1301, 1951, 2081, 2341, 2731, 2861, 3121, 3251, 3511, 32833, 35911, 37963, 43093, 44119, 46171, 53353, 56431, 57457, 59509, 61561, 68743, 71821, 77977, 85159, 87211, 88237, 90289, 95419, 99523, 100549, 114913, 117991, 123121, 124147, 126199
Offset: 1
Examples
2 and 3 in base 8 are 2_8 and 3_8, and concat(2,3) = 23_8 in base 10 is 19; 8 and 9 in base 8 are 10_8 and 11_8 and concat(10,11) = 1011_8 in base 10 is 521.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,8),i=1..1000);
-
Mathematica
With[{b = 8}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 250, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 25 2017 *)
Comments