cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287391 Nonprimes k that are a totative of more than one primorial p_n# = A002110(n).

Original entry on oeis.org

1, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411
Offset: 1

Views

Author

Jamie Morken, May 24 2017

Keywords

Comments

From Michael De Vlieger, May 24 2017; corrected and edited by M. F. Hasler, Oct 04 2018: (Start)
Let p_n# = A002110(n). This sequence lists 1 and composite numbers p_n# < k < p_(n+1)# for all positive n such that least_prime_factor(k) > p_(n+2).
Subset of A285784.
If considered as an irregular number triangle T(n,k), row lengths n < A048863(n).
(End)

Examples

			From _Michael De Vlieger_, May 24 2017: (Start)
a(1) = 1 since 1 is coprime to all numbers.
169 is in the sequence since it is coprime to p_4# = 210 and p_5# = 2310 yet less than both, however prime(6) = 13 divides 169 thus it is not a totative of p_6# or any larger primorial. (End)
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[If[First@ #2 == 1, k == 1 || Total[f[[All, -1]]] > 1, Total[f[[All, -1]]] > 1], CoprimeQ[Last@ #1, k], f[[1, 1]] != Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
  • PARI
    is(n,f=if(n>1,factor(n)[,1][1],4),P=1)={n!=f&&forprime(p=2,precprime(f-1)-1,n%p||return;(P*=p)>n&&return(1))} \\ M. F. Hasler, Oct 04 2018

Formula

For 2 < n <= 108, a(n) = A008367(n-2); for 109 <= n < 120, a(n) = A008367(n). - M. F. Hasler, Oct 04 2018

Extensions

Edited by Michael De Vlieger, May 24 2017