cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287472 Triangular numbers k such that phi(k) is also a triangular number, where phi(k) is the Euler totient function (A000010).

Original entry on oeis.org

1, 231, 1035, 6786, 190036, 193131, 766941, 1237951, 1348903, 3069003, 3396921, 8034036, 9152781, 11875501, 15694003, 28001386, 29587278, 35149920, 61643856, 63196903, 130758706, 178161126, 198214005, 227751153, 268111746, 339210081, 402102261, 654224878
Offset: 1

Views

Author

Amiram Eldar, May 25 2017

Keywords

Comments

The indices of these triangular numbers are: 1, 21, 45, 116, 616, 621, 1238, 1573, 1642, 2477, 2606, 4008, 4278, 4873, 5602, 7483, 7692, 8384, 11103, 11242, 16171, 18876, 19910, 21342, 23156, 26046, 28358, 36172, 46196, 46621, 67572, 72816, ...
The indices of the triangular phi values are: 1, 15, 32, 63, 384, 495, 927, 1440, 1599, 1856, 2015, 2240, 3200, 4640, 5375, 4895, 4095, 4095, 6400, 9855, 10880, 9855, 13824, 16128, 12095, 19520, 21504, 25344, 25983, 45584, 37184, 40959, ...

Examples

			231 = 21*22/2 is triangular, phi(231)=120=15*16/2 is also triangular, thus 231 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := IntegerQ@Sqrt[8n+1]; Select[Accumulate[Range[1000]], triQ[EulerPhi[#]]&]
  • PARI
    isok(n) = ispolygonal(n, 3) && ispolygonal(eulerphi(n), 3); \\ Michel Marcus, May 25 2017