A287548 Triangle read by rows: T(n,k), where each row begins with the Catalan number for n nonintersecting arches and transitions through k generations of eliminating and reducing arch configurations to an end row entry equal to number of semi-meander solutions for n arches.
1, 2, 1, 5, 3, 2, 14, 9, 7, 4, 42, 28, 23, 16, 10, 132, 90, 76, 57, 42, 24, 429, 297, 255, 199, 156, 108, 66, 1430, 1001, 869, 695, 563, 420, 304, 174, 4862, 3432, 3003, 2442, 2019, 1568, 1210, 836, 504
Offset: 1
Examples
Triangle begins: n\k 1 2 3 4 5 6 7 8 1: 1 2: 2 1 3: 5 3 2 4: 14 9 7 4 5: 42 28 23 16 10 6: 132 90 76 57 42 24 7: 429 297 255 199 156 108 66 8: 1430 1001 869 695 563 420 304 174 ... Capital letters (U,D) represent beginning and end of first and last arch. Only 1 UD ends arch sequence in next generation. Reduction of arches: Elimination of arches: (middle D U = new arch U D in the next arch generation) /\ /\ //\\ /\/\/\/\ = UDududUD //\\/\///\\\ = UudDudUuuddD /\ /\ /\ / \ /\//\\//\\ = UDuuddUudD //\/\\ = UududD end For n=3 C(n)=5 nonintersecting arch configurations: UuuddD UududD UudDUD UDUudD UDudUD T(3,1)=5 end end UDUD UDUD UudD T(3,2)=3 UD UD end T(3,3)=2