A287590 Number of squarefree odd primitive abundant numbers with n prime factors.
0, 0, 0, 0, 87, 14172, 101053625, 3475496953795289
Offset: 1
Examples
From _M. F. Hasler_, Jun 26 2017: (Start) All squarefree odd primitive abundant numbers (SOPAN) have at least 5 prime factors, since the abundancy of a product of 4 distinct odd primes cannot be larger than that of N = 3*5*7*11, with A000203(N)/N = 4/3 * 6/5 * 8/7 * 12/11 = 768/385 = 2 - 2/385 < 2. The 87 SOPAN with 5 prime factors range from A249263(1) = 15015 = 3*5*7*11*13 to A287581(5) = A249263(87) = 442365 = 3*5*7*11*383. The 14172 SOPAN with 6 prime factors range from A188342(6) = A249263(88) = 692835 = 3*5*11*13*17*19 to A287581(6) = 13455037365 = 3*5*7*11*389*29947. The 101053625 SOPAN with 7 prime factors range from A188342(7) = A249263(608) = 22309287 = 3*7*11*13*17*19*23 to A287581(7) = 1725553747427327895 = 3*5*7*11*389*29959*128194559. (End)
Links
- Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, Maurizio Parton, Primitive abundant and weird numbers with many prime factors, arXiv:1802.07178 [math.NT], 2018.
Programs
-
PARI
A287590(r,p=2,a=2,s=0,n=precprime(1\(a-1)))={ r>1 || return(primepi(n)-primepi(p)); (p
a && while( 0 A287590(r-1,p=nextprime(p+1),a/(1+1/p)),s+=n); s}
Extensions
Added a(8) calculated by Gianluca Amato. - M. F. Hasler, Jun 26 2017
Example for 101053625 corrected by Peter Munn, Jul 23 2017
Comments