A287594 Number of independent vertex sets in the n-helm graph.
3, 4, 12, 28, 72, 184, 480, 1264, 3360, 8992, 24192, 65344, 177024, 480640, 1307136, 3559168, 9699840, 26452480, 72173568, 196989952, 537802752, 1468536832, 4010582016, 10954043392, 29920862208, 81733033984, 223274237952, 609947435008, 1666309128192
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Helm Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -4).
Crossrefs
Cf. A080040.
Programs
-
Mathematica
Table[2^n + (1 - Sqrt[3])^n + (1 + Sqrt[3])^n, {n, 0, 20}] // Expand Table[2^n + 2^(n/2) LucasL[n, Sqrt[2]], {n, 0, 20}] // Round LinearRecurrence[{4, -2, -4}, {4, 12, 28}, {0, 20}] CoefficientList[Series[(3 - 8 x + 2 x^2)/(1 - 4 x + 2 x^2 + 4 x^3), {x, 0, 20}], x]
Formula
a(n) = 2^n+A080040(n).
a(n) = 2^n+(1-sqrt(3))^n+(1+sqrt(3))^n.
a(n) = 4*a(n-1)-2*a(n-2)-4*a(n-3).
G.f.: (3-8*x+2*x^2)/((1-2*x)*(1-2*x-2*x^2)).
Comments